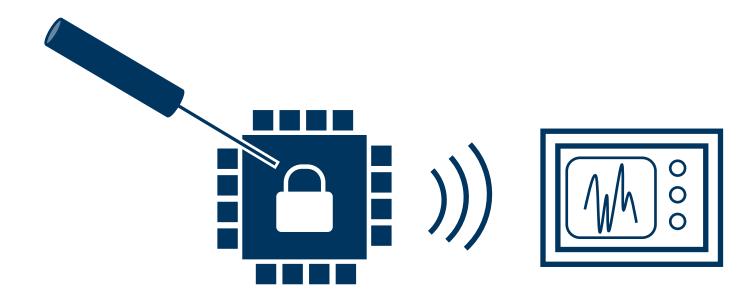
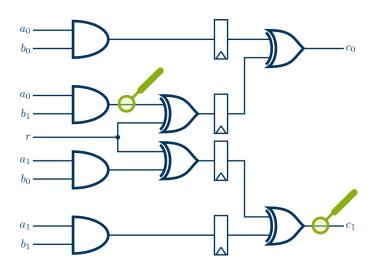


RUHR-UNIVERSITÄT BOCHUM

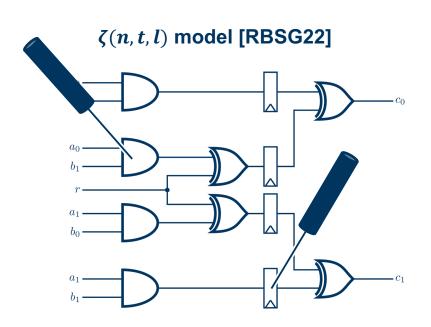

Computer-Aided Verification of Countermeasures against Physical Attacks

Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, Tim Güneysu

Physical Attacks


Fault-Injection Attacks

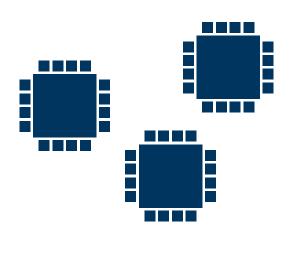
Side-Channel Attacks


Model Physical Attacks

d-probing model [ISW03]

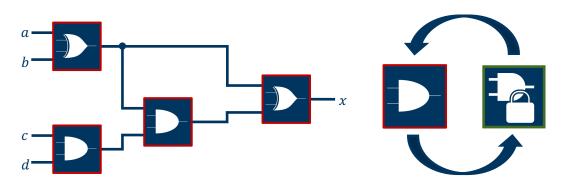
An adversary is given the exact values of up to d wires of a circuit C.

An adversary can inject up to n faults assuming a fault type t and locations l.

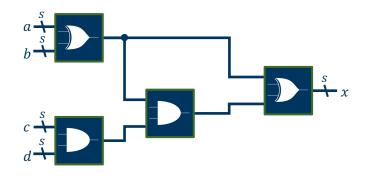

Countermeasures

Side-Channel Attacks

Fault-Injection Attacks



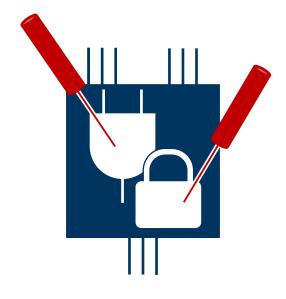
Redundancy


Secure Gadgets

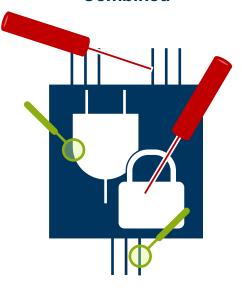
Insecure Circuit


Protected Circuit

Composability Notions



Side Channel


PNI, PSNI PINI

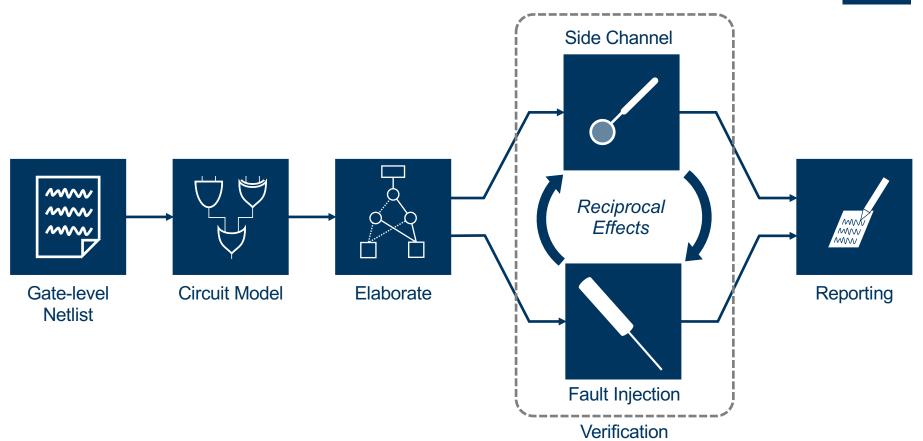
Fault Injection

FNI, FSNI FINI

Combined

CNI, CSNI, ICSNI CINI, ICINI

Research Questions



How to efficiently apply computer-aided verification to evaluate countermeasures against physical attacks?

Verification Concept

Verification of Countermeasures against Fault Injections [RBRSS+21]

Single round of CRAFT protected by linear error correcting codes

$$t = \tau_{bf}$$
 $l = mc_{\infty}$

1-bit Protection

2-bit Protection

3-bit Protection

925

1490

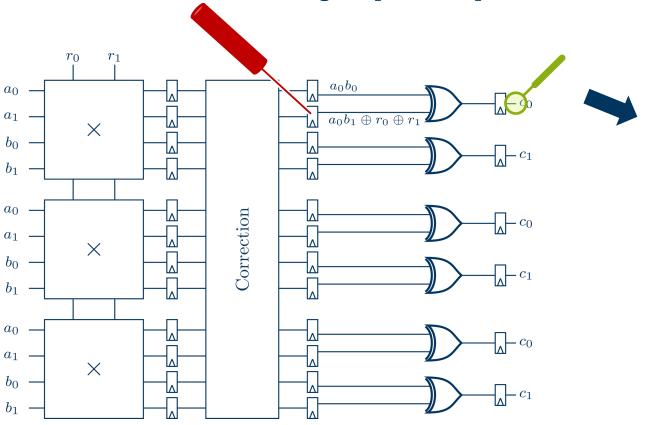
1807

766

329 730

91 737 144

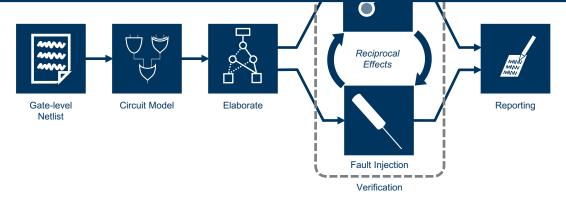
0.021 s


1.496 s

2937 s

Verification of Combined Gadgets [RFSG22]

Summary



Code and paper are publicly available

https://github.com/Chair-for-Security-Engineering/VERICA

Modeling of Physical Attacks

Verification of Countermeasures against Physical Attacks

jan.richter-brockmann@rub.de

References

[BBD+15]	Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order Masking. In EUROCRYPT, pages 457–485, 2015.
[BBD+16]	Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-Interference and Type-Directed Higher-Order Masking. In SIGSAC, pages 116–129, 2016.
[CS20]	Gaetan Cassiers and Fran, cois-Xavier Standaert. Trivially and Efficiently Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE Trans. Inf. Forensics Secur., 15:2542–2555, 2020.
[DDE+20]	Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Florian Mendel, and Robert Primas. Protecting against Statistical Ineffective Fault Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):508–543, 2020.
[DN20]	Siemen Dhooghe and Svetla Nikova. My Gadget Just Cares for Me – How NINA Can Prove Security Against Combined Attacks. In CT-RSA, volume 12006 of Lecture Notes in Computer Science, pages 35–55. Springer, 2020.
[FGP+18]	Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and Fran, cois-Xavier Standaert. Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):89–120, 2018.
[FRSG22]	Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. CINI MINIS: Domain Isolation for Fault and Combined Security. CCS, 2022
[HPB21]	Vedad Hadzic, Robert Primas, and Roderick Bloem. <i>Proving SIFA protection of masked redundant circuits</i> . In Automated Technology for Verification and Analysis, volume 12971 of Lecture Notes in Computer Science, pages 249–265. Springer, 2021.
[ISW03]	Yuval Ishai, Amit Sahai, and David A. Wagner. <i>Private Circuits: Securing Hardware against Probing Attacks</i> . In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.
[KSM20]	David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER – Statistical Independence and Leakage Verification. In ASIACRYPT, volume 12491 of Lecture Notes in Computer Science, pages 787–816. Springer, 2020.
[RBRSS+21]	Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir Moradi, and Tim Güneysu. FIVER – Robust Verification of Countermeasures against Fault Injections. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):447–473, Aug. 2021.
[RBSG21]	Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. Revisiting Fault Adversary Models - Hardware Faults in Theory and Practice. Trans. On Computers, 2022
[RFSG22]	Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim G¨uneysu. VERICA - Verifi cation of Combined Attacks: Automated formal verification of security against simultaneous information leakage and tampering. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4), 2022.
[SMG16]	Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards Combined Hardware Countermeasures Against Side-Channel and Fault-Injection Attacks. In CRYPTO 2016, volume 9815 of Lecture Notes in Computer Science, pages 302–332. Springer, 2016.