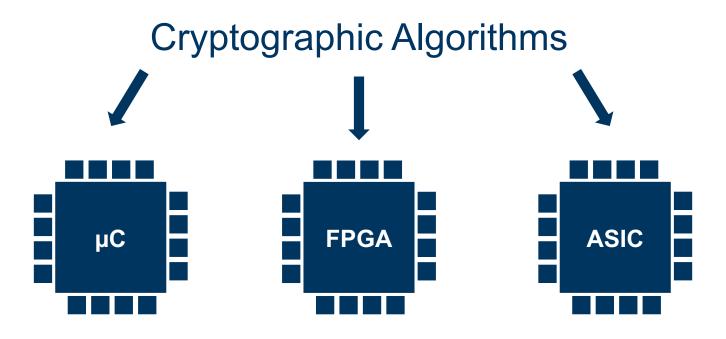
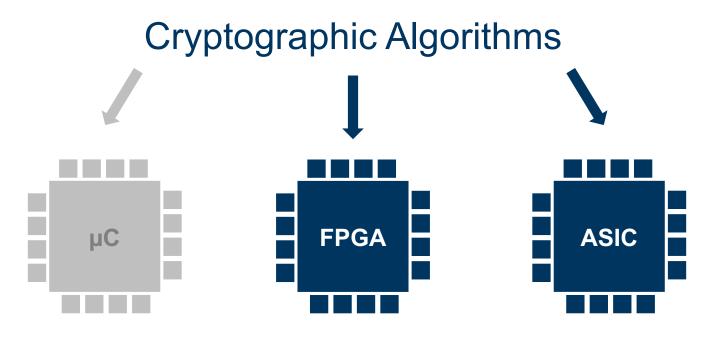
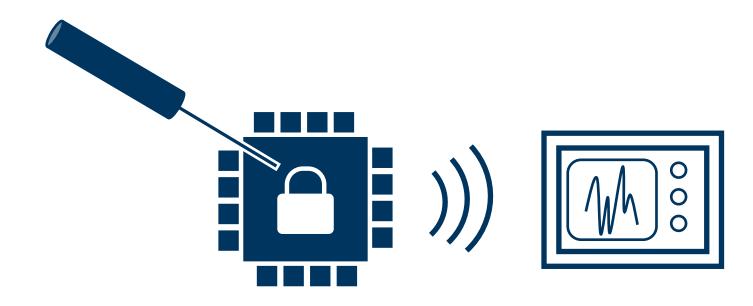


RUHR-UNIVERSITÄT BOCHUM


Computer-Aided Verification of Countermeasures against Physical Attacks

Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, Tim Güneysu

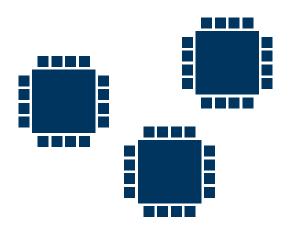

Cryptography on Embedded Devices


Cryptography on Embedded Devices

Physical Attacks

Fault-Injection Attacks

Side-Channel Attacks


Countermeasures

Side-Channel Attacks

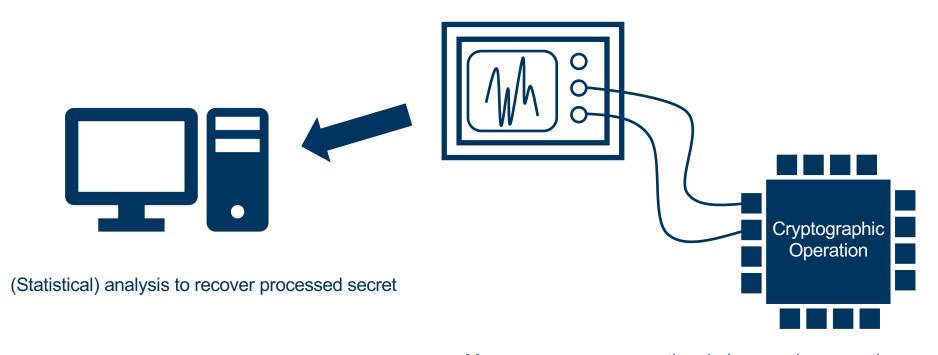
Fault-Injection Attacks

Redundancy

Research Questions

1 Combined Attacks

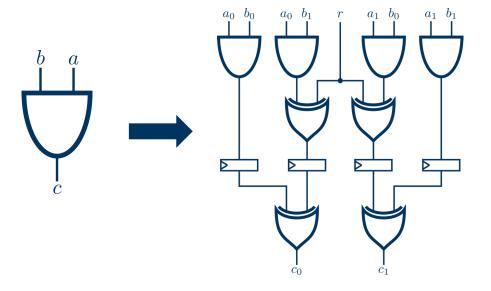
3 Formal Verification



Side-Channel Analysis

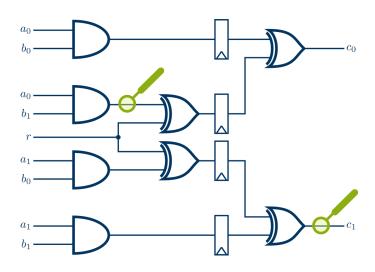
Side-Channel Attacks

Measure power consumption during ongoing operation

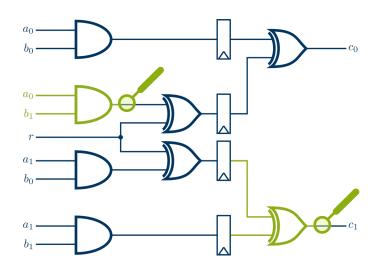

Countermeasures against Side-Channel Attacks

$$x = x_0 \oplus x_1 \oplus ... \oplus x_{s-1}$$

Linear Functions


Non-linear Functions

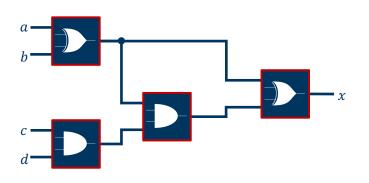
Modeling Side-Channel Attacks



d-probing model [ISW03]

An adversary is given the exact values of up to *d* wires of a circuit *C*.

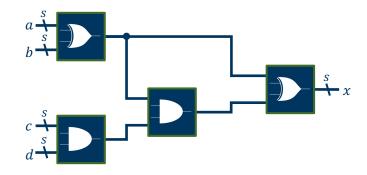
Glitch-extended *d*-probing model [FGP+18]



An adversary is given the exact values of all synchronization points influencing up to *d* wires of a circuit C.

Protection by Secure Gadgets

Insecure Circuit



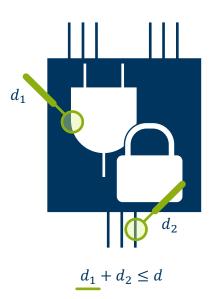
Replace insecure gates by secure gadgets

Share inputs and outputs

Maintain timing (pipelining)

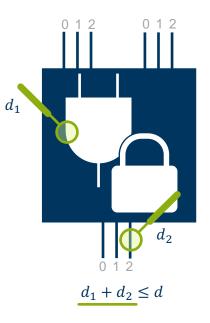
Protected Circuit

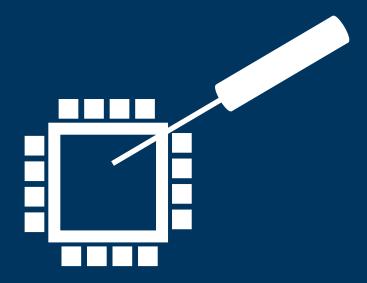
Modeling Side-Channel Attacks – Composability



PNI [BBD+15]

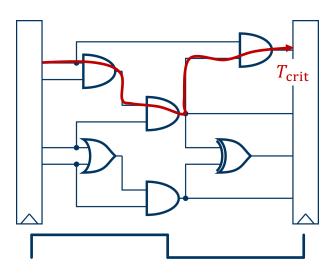
Probe Non-Interference


 $\underline{d'} \leq d$



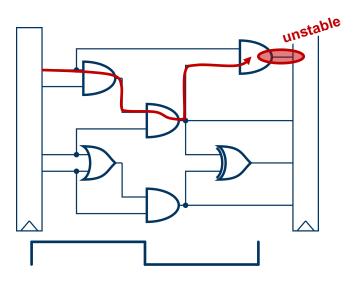
PINI [CS20]

Probe-Isolating Non-Interference


Fault-Injection Attacks

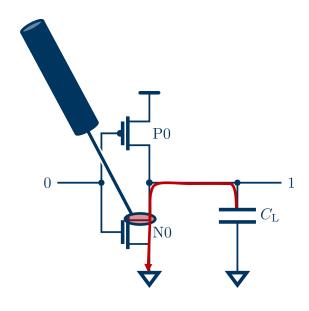
Fault-Injection Attacks [RBSG21]

Clock Glitches



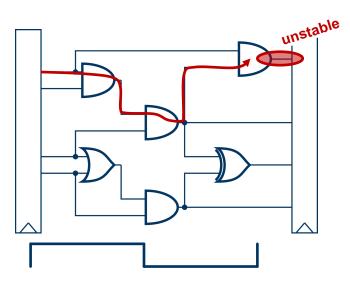
 $T_{\rm clk} \ge T_{\rm crit} + t_{\rm clkq} + t_{\rm setup} - \delta$

Fault-Injection Attacks [RBSG21]

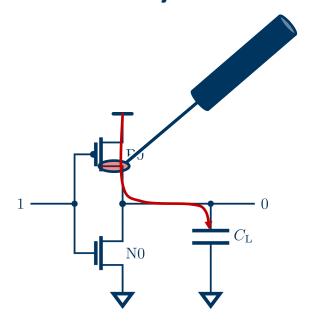


Clock Glitches

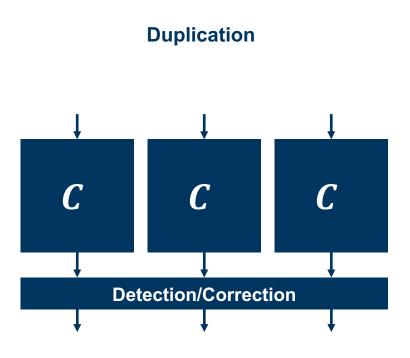
 $T'_{\rm clk} < T_{\rm crit} + t_{\rm clkq} + t_{\rm setup} - \delta$


Laser Fault Injection

Fault-Injection Attacks [RBSG21]

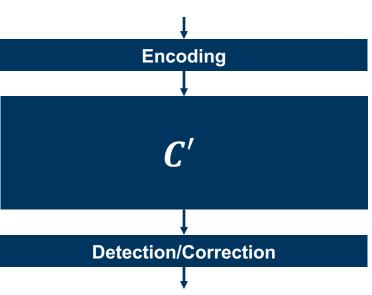


Clock Glitches


 $T'_{\rm clk} < T_{\rm crit} + t_{\rm clkq} + t_{\rm setup} - \delta$

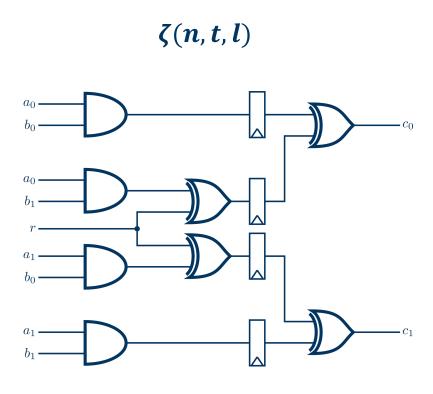
Laser Fault Injection

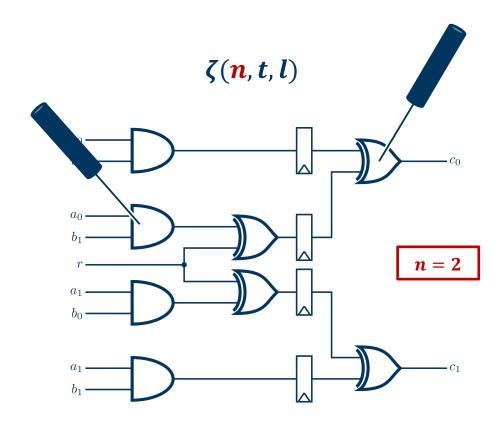
Countermeasures against Fault-Injection Attacks



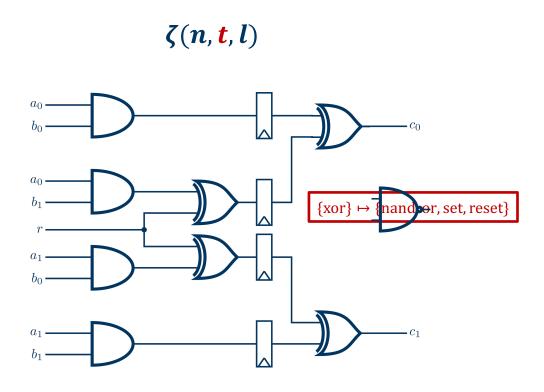
Detection: k + 1 instantiations

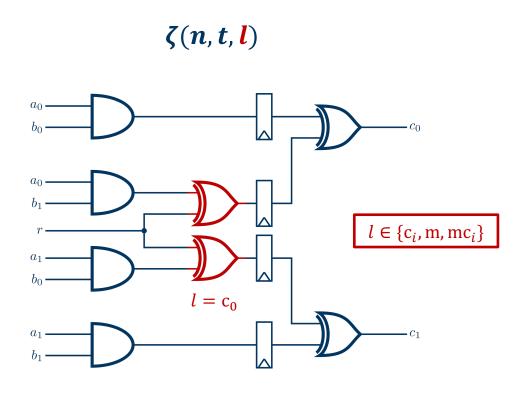
Correction: 2k + 1 instantiations

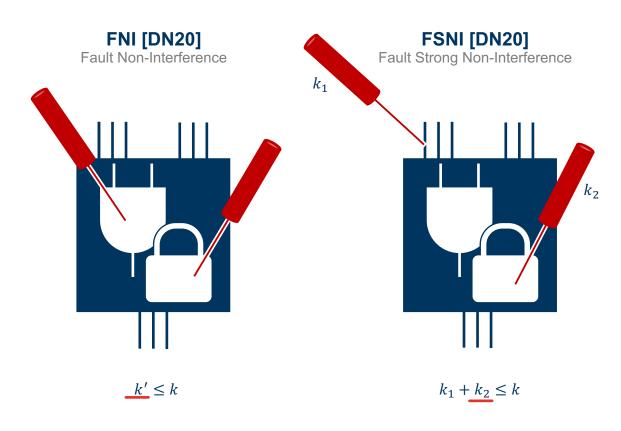


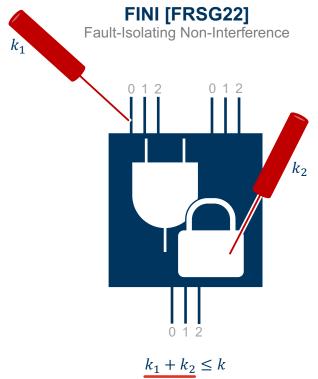

Detection: $d_{\min} - 1$

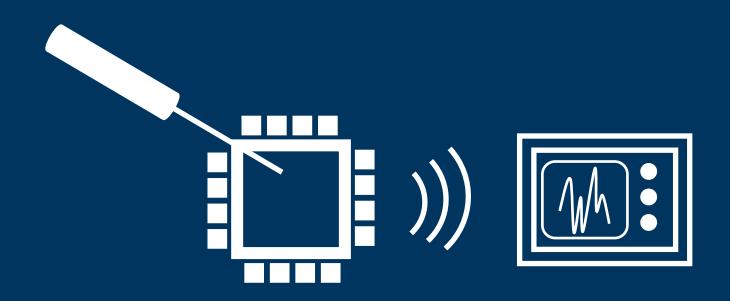
Correction: $\left\lfloor \frac{d_{\min}-1}{2} \right\rfloor$



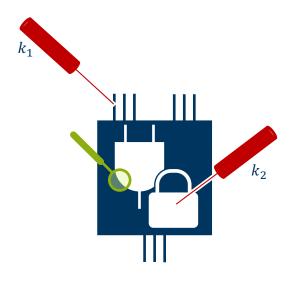






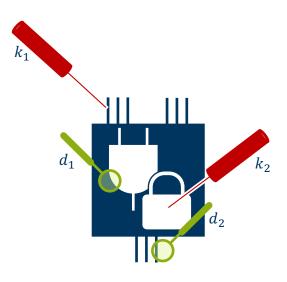

Modeling Fault-Injection Attacks – Composability

Combined Attacks



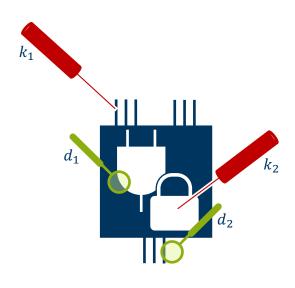
Modeling Fault-Injection Attacks – Composability

CNI [DN20]


Combined Non-Interference

$$\frac{d' + k_1 + k_2 \le d}{k_1 + k_2 \le k}$$

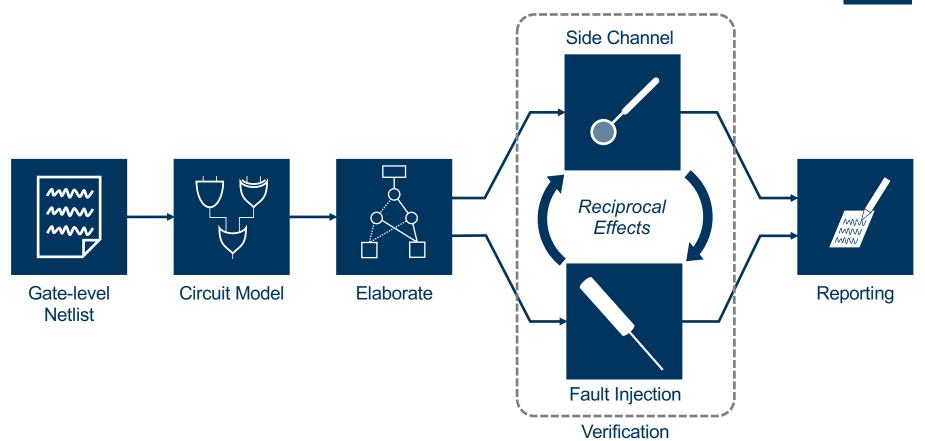
CSNI [DN20]


Combined Strong Non-Interference

$$\frac{d_1 + d_2 + k_1 + k_2}{k_1 + k_2} \le d$$

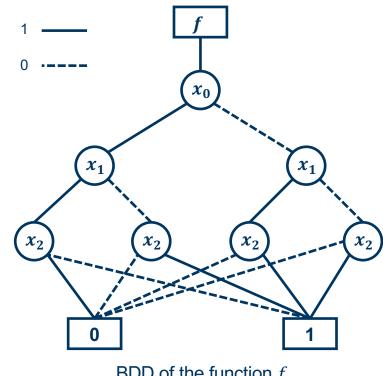
ICSNI [DN20]

Independent Combined Strong Non-Interference


$$\frac{d_1 + d_2 \le d}{k_1 + k_2} \le k$$

Verification

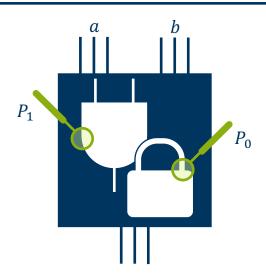
Verification Concept



Binary Decision Diagrams (BDDs)

Advantages using BDDs

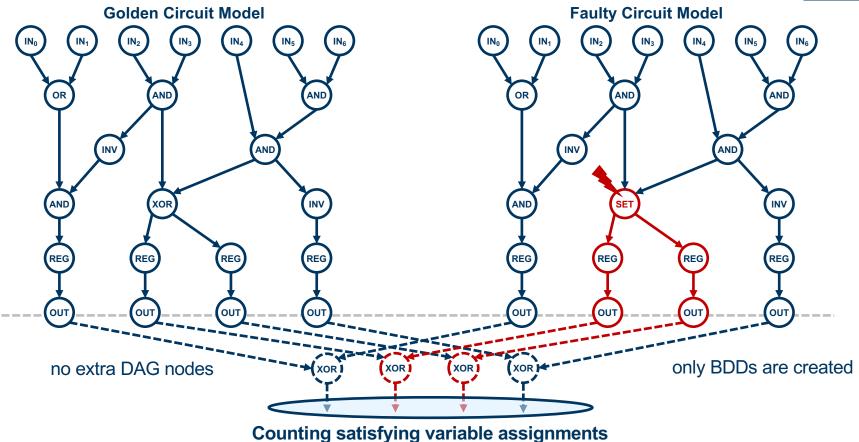
- Proposed for testing VLSI circuits
- Symbolic simulation
- Boolean operations are elementary operations
- Efficiently determine number of satisfying assignments
- Checking statistical dependencies
- Comparing golden and faulty circuit models


BDD of the function *f*

Verification Principles for *d***-Probing [KSM20]**

d-Probing Security. A circuit C with secret input set $X \in \mathbb{F}_2^n$ is d-probing secure, if and only if for any observation set Q containing d wires, X is statistically independent of the observation set, i.e., the following condition holds:

$$\Pr[\boldsymbol{Q}|\boldsymbol{X}] = \Pr[\boldsymbol{Q}].$$


$$\boldsymbol{Q} = \{P_0, P_1\}$$

$$X' \subseteq X$$
 i.e., $X' \in \{\{a\}, \{b\}, \{a, b\}\}$

$$p_{\boldsymbol{Q},\boldsymbol{X}'}(\boldsymbol{1},\boldsymbol{1}) \neq p_{\boldsymbol{Q}}(\boldsymbol{1}) \cdot p_{\boldsymbol{X}'}(\boldsymbol{1}) \rightarrow \text{insecure}$$

Checking Fault Security on BDDs

Verification of Countermeasures against Fault Injections [RBRSS+21]

Single round of CRAFT protected by linear error correcting codes

$$t = \tau_{bf}$$
 $l = mc_{\infty}$

2-bit Protection

1-bit Protection

3-bit Protection

925

1 490

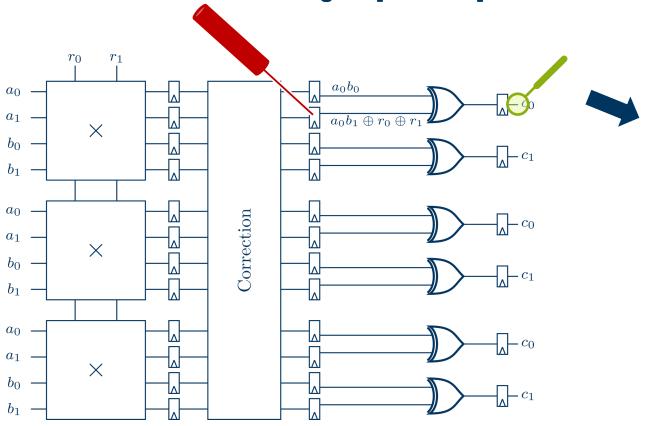
1807

766

329 730

91 737 144

0.021 s


1.496 s

2937 s

Verification of Combined Gadgets [RFSG22]

VERICA – Verification of Combined Attacks

Features

Limitations

No transitions nor couplings

Higher-order verifications

Side-Channel Security

d-probing model Glitch-extended d-probing

Side-Channel Composability

PNI PSNI PINI

Fault Security

Detection strategy Correction strategy SIFA strategy

Fault Composability

FNI FSNI FINI

Combined Composability

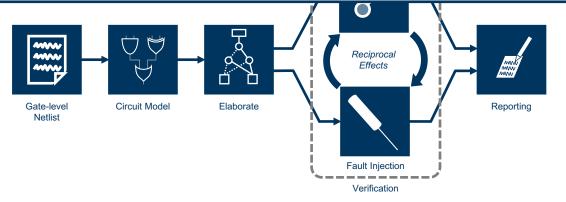
(d, k)-combined security

CNI CINI CSNI ICINI ICSNI

Combined Security

Performing exhaustive analyses - exact verification for generic unrolled hardware circuits

Summary



Code and paper are publicly available

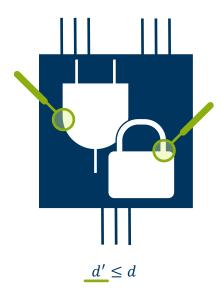
https://github.com/Chair-for-Security-Engineering/VERICA

Modeling of Physical Attacks

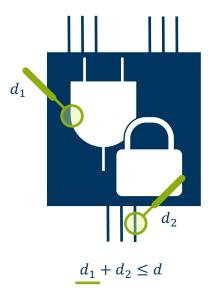
Verification of Countermeasures against Physical Attacks

jan.richter-brockmann@rub.de

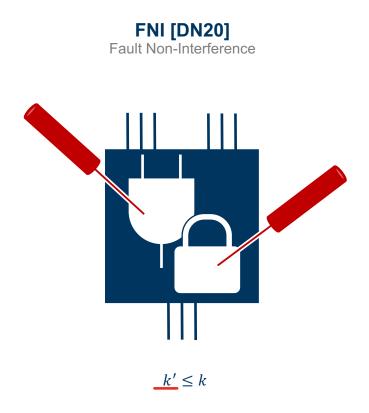
References

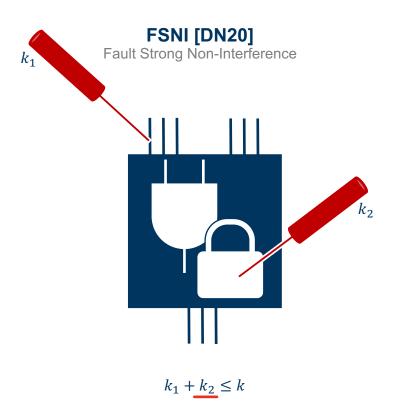

[BBD+15]	Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order Masking. In EUROCRYPT, pages 457–485, 2015.
[BBD+16]	Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-Interference and Type-Directed Higher-Order Masking. In SIGSAC, pages 116–129, 2016.
[CS20]	Gaetan Cassiers and Fran, cois-Xavier Standaert. Trivially and Efficiently Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE Trans. Inf. Forensics Secur., 15:2542–2555, 2020.
[DDE+20]	Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Florian Mendel, and Robert Primas. Protecting against Statistical Ineffective Fault Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):508–543, 2020.
[DN20]	Siemen Dhooghe and Svetla Nikova. My Gadget Just Cares for Me – How NINA Can Prove Security Against Combined Attacks. In CT-RSA, volume 12006 of Lecture Notes in Computer Science, pages 35–55. Springer, 2020.
[FGP+18]	Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and Fran, cois-Xavier Standaert. Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):89–120, 2018.
[FRSG22]	Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. CINI MINIS: Domain Isolation for Fault and Combined Security. CCS, 2022
[HPB21]	Vedad Hadzic, Robert Primas, and Roderick Bloem. <i>Proving SIFA protection of masked redundant circuits</i> . In Automated Technology for Verification and Analysis, volume 12971 of Lecture Notes in Computer Science, pages 249–265. Springer, 2021.
[ISW03]	Yuval Ishai, Amit Sahai, and David A. Wagner. <i>Private Circuits: Securing Hardware against Probing Attacks</i> . In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.
[KSM20]	David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER – Statistical Independence and Leakage Verification. In ASIACRYPT, volume 12491 of Lecture Notes in Computer Science, pages 787–816. Springer, 2020.
[RBRSS+21]	Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir Moradi, and Tim Güneysu. FIVER – Robust Verification of Countermeasures against Fault Injections. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):447–473, Aug. 2021.
[RBSG21]	Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. Revisiting Fault Adversary Models - Hardware Faults in Theory and Practice. Trans. On Computers, 2022
[RFSG22]	Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim G¨uneysu. VERICA - Verifi cation of Combined Attacks: Automated formal verification of security against simultaneous information leakage and tampering. IACR Trans. Cryptogr. Hardw. Embed. Syst. , 2022(4), 2022.
[SMG16]	Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards Combined Hardware Countermeasures Against Side-Channel and Fault-Injection Attacks. In CRYPTO 2016, volume 9815 of Lecture Notes in Computer Science, pages 302–332. Springer, 2016.

Modeling Side-Channel Attacks – Composability

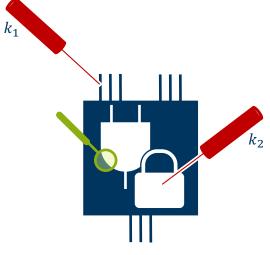

PNI [BBD+15]

Probe Non-Interference


PSNI [BBD+16]

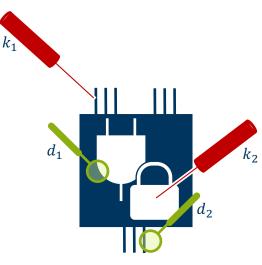

Probe Strong Non-Interference

Modeling Fault-Injection Attacks – Composability


Modeling Combined Attacks – Composability

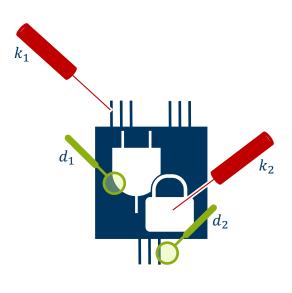
CNI [DN20]

Combined Non-Interference



$$\frac{d' + k_1 + k_2 \le d}{k_1 + k_2 \le k}$$

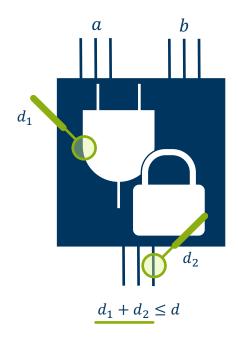
CSNI [DN20]


Combined Strong Non-Interference

$$\frac{d_1 + d_2 + k_1 + k_2}{k_1 + k_2} \le d$$

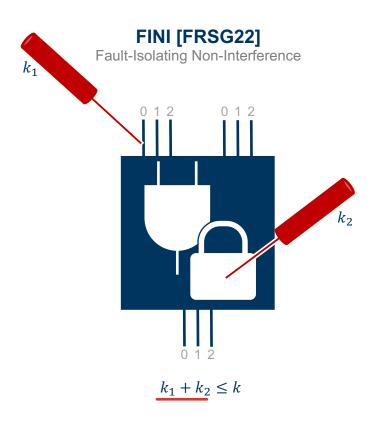
ICSNI [DN20]

Independent Combined Strong Non-Interference



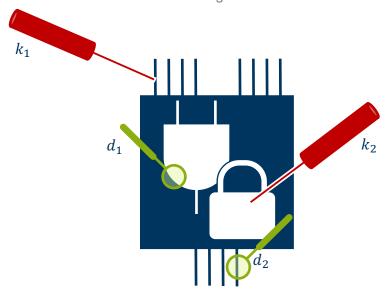
$$\frac{d_1 + d_2 \le d}{k_1 + k_2 \le k}$$

Modeling Side-Channel Attacks – Composability



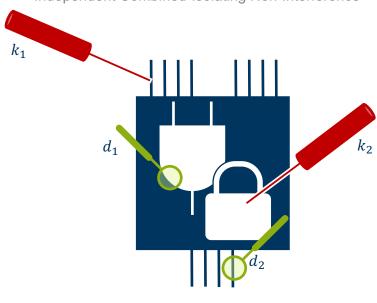
PINI [CS20]
Probe-Isolating Non-Interference

Modeling Fault-Injection Attacks – Composability



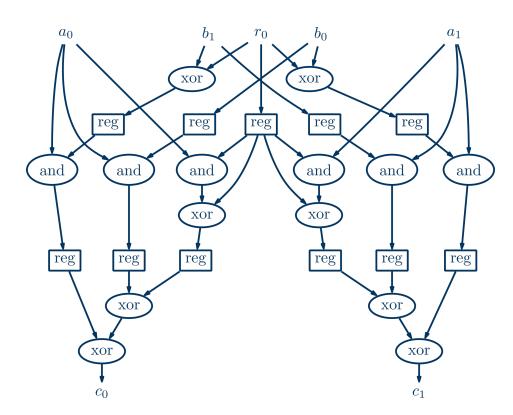
Modeling Combinded Attacks – Composability

CINI [FRSG22]

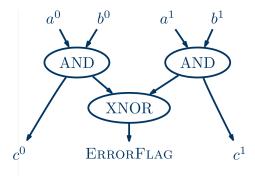

Combined-Isolating Non-Interference

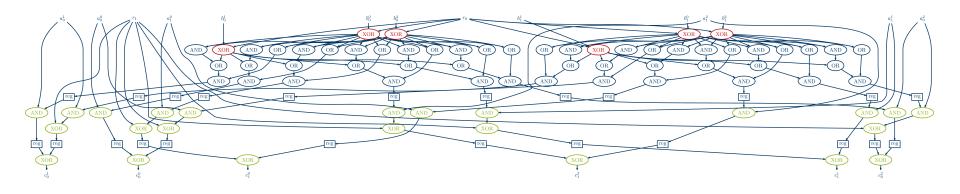
$$\frac{d_1 + d_2 + k_1 + k_2 \le d}{k_1 + k_2 \le k}$$

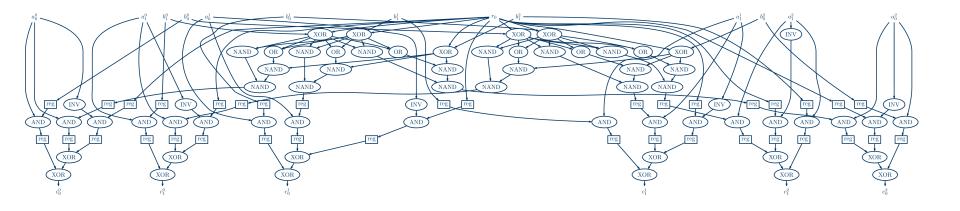
ICINI [FRSG22]

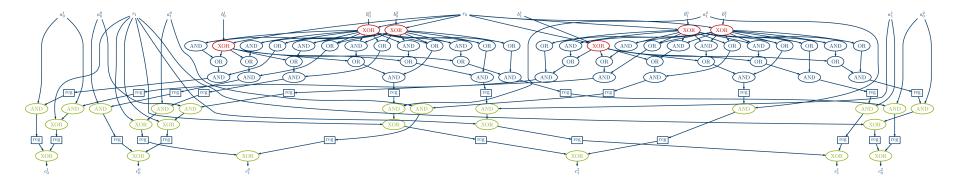

Independent Combined-Isolating Non-Interference

$$\frac{d_1 + d_2}{k_1 + k_2} + k_1 + k_2 \le d$$

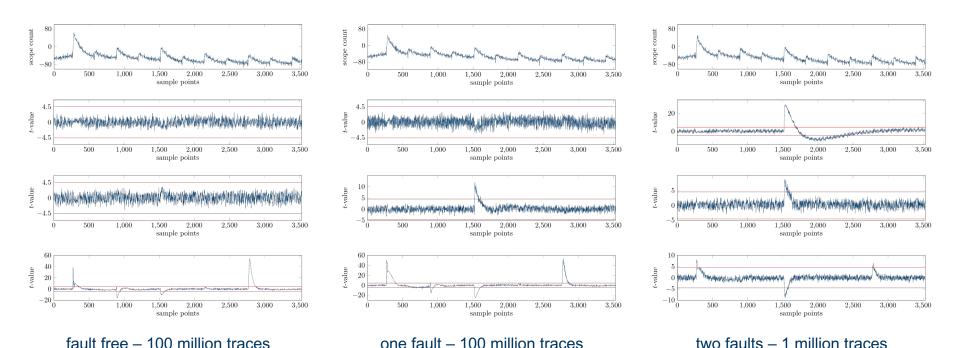

PINI Gadget (HPC2)


FINI Gadget


CINI Gadget – HPC^c₁

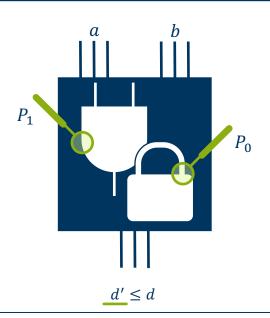

CINI Gadget – HPC^c₂

ICINI Gadget - HPC₁^I



Practical Validation

PRESENT S-box protected by (2, 2)-CINI Gadgets



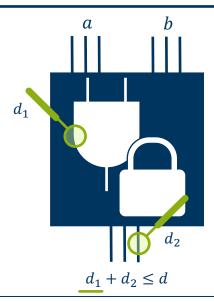
Verification Principles in SILVER [KSM20]

d-Non-Interference. A circuit C with secret input set $X \in \mathbb{F}_2^n$ provides d-Non-Interference if and only if for any observation set of $d' \leq d$ wires Q there exists a set S of input shares with $|S|_{\forall i} \leq d'$ such that

$$\Pr[\mathbf{Q}|\mathbf{S}] = \Pr[\mathbf{Q}|Sh(\mathbf{X})].$$

$$\boldsymbol{Q} = \{P_0, P_1\}$$

$$S = \{a_0, a_2, b_1, b_2\}$$


$$Sh(X) = Sh(a,b)$$

Verification Principles in SILVER [KSM20]

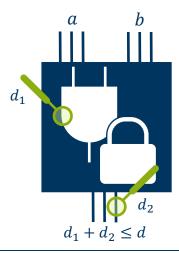
d-Strong Non-Interference. A circuit C with secret input set $X \in \mathbb{F}_2^n$ provides d-Strong Non-Interference if and only if for any observation set of $d' = d_1 + d_2 \le d$ wires Q of which d_1 are internal wires and d_2 are output wires, there exists a simulation set S of input shares with $|S|_{\forall i} \le d_1$ such that

$$\Pr[\boldsymbol{Q}|\boldsymbol{S}] = \Pr[\boldsymbol{Q}|Sh(\boldsymbol{X})].$$

$$Q = \{P_0, P_1\}$$

$$\mathbf{S} = \{a_0, b_1\}$$

$$Sh(X) = Sh(a,b)$$


Verification Principles in SILVER [KSM20]

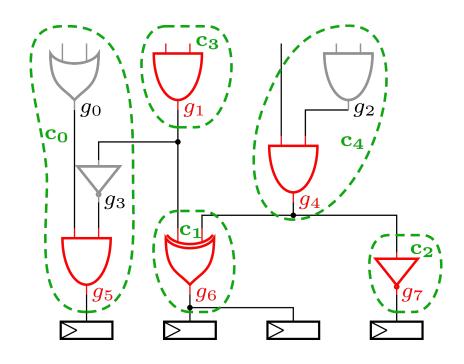
d-Probe-Isolating Non-Interference. Let P be the set of internal probes with $|P| = d_1$. Let further I_0 be the index set assigned to the probed output wires O with $|I_0| = d_2$.

A circuit C with secret input set $X \in \mathbb{F}_2^n$ provides d-Probe-Isolating Non-Interference if and only if for every P and O with $d_1 + d_2 \le d$ there exists a set I_I of circuit indices with $|I_I| \le d_1$ such that $Q = P \cup O$ can be perfectly simulated by $S = Sh(X)^{I_I \cup I_O}$, i.e., it holds that

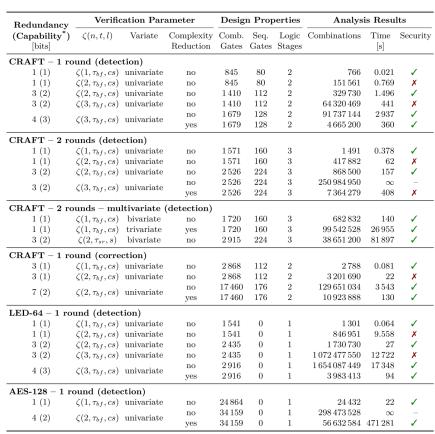
$$\Pr[\boldsymbol{Q}|\boldsymbol{S}] = \Pr[\boldsymbol{Q}|Sh(\boldsymbol{X})].$$

$$Q = \{P_0, P_1\}$$

$$S = \{a_0, a_2, b_0, b_2\}$$


$$Sh(X) = Sh(a, b)$$

25: end for

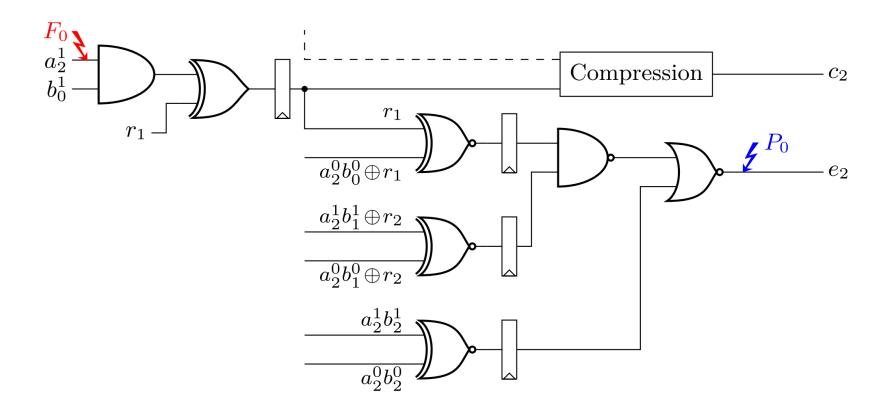

Complexity Reduction in FIVER


```
Algorithm 10 Complexity Reduction.
Require: Golden circuit model D, set of valid fault location (nodes) \Lambda
Ensure: Set of reduced fault locations \Lambda_{red}
 1: \Sigma \leftarrow \emptyset, \Lambda_{\text{red}} \leftarrow \emptyset
 2: for \forall d \in \mathbf{D} do
            if type (d) = \text{reg or type } (d) = \text{out then}
                 \Sigma \leftarrow \Sigma \cup d
                 if d \in \Lambda then
                       \Lambda_{\text{red}} \leftarrow \Lambda_{\text{red}} \cup d
                 end if
            end if
 9: end for
10: for \sigma \in \Sigma do
            \Lambda_{\mathrm{red}} \leftarrow \Lambda_{\mathrm{red}} \cup \mathtt{node\_in}(\sigma)
11:
            \Phi \leftarrow \sigma
12:
13:
            while \Phi \neq \emptyset do
14:
                 \alpha \leftarrow \Phi[0], delete(\Phi[0])
15:
                 for \forall n \in node_in(\sigma) do
16:
                       if type (n) \neq \text{reg and type } (n) \neq \text{in then}
17:
                            \Phi \leftarrow \Phi \cup n
                       end if
                       if out_degree(\alpha) > 1 and \alpha \in \Lambda and \alpha \notin \Lambda_{red} then
20:
                            \Lambda_{\text{red}} \leftarrow \Lambda_{\text{red}} \cup \alpha
21:
                       end if
                 end for
23:
24:
            end while
```


Case Studies from FIVER

 $^{^{*}}$ The capability determines the maximum number of faults that can be detected or corrected by the corresponding countermeasure.

Case Studies from VERICA – Combined Gadgets


$\overline{\text{Gadget}}$	Design			SCA			FIA			Combined				
	\overline{d}	k	rand.	comb.	memory	PNI	PSNI	Time	FNI	FSNI	Time		(d, k)	Time
NINA	1	1	0	4	0	1	_	$0.460\mathrm{s}$	1	_	$0.429\mathrm{s}$		(1,1)	$0.430\mathrm{s}$
NINA	1	2	0	6	0	1	_	$0.455\mathrm{s}$	2^{\checkmark}	_	$0.445\mathrm{s}$	I	(1,2)	$0.492\mathrm{s}$
NINA	2	1	0	6	0	2	_	$0.471\mathrm{s}$	1	_	$0.451\mathrm{s}$	\Box	(2,1)	$0.436\mathrm{s}$
NINA	2	2	0	9	0	2	_	$0.442\mathrm{s}$	2	_	$0.444\mathrm{s}$		(2,2)	$0.442\mathrm{s}$
SNINA	1	1	1	22	16	_	1	$0.476\mathrm{s}$	_	1	$0.449\mathrm{s}$		(1,1)	$0.473\mathrm{s}$
SNINA	1	2	1	38	26	_	1	$0.451\mathrm{s}$	_	2	$0.500\mathrm{s}$	N	(1,2)	$0.519\mathrm{s}$
SNINA	2	1	3	57	33	_	2^{\checkmark}	$0.566\mathrm{s}$	_	1	$0.456\mathrm{s}$	S	$(2,1)^{x}/(1,1)^{\checkmark}$	$0.592\mathrm{s}$
SNINA	2	2	3	96	54	_	$2\checkmark$	$0.821\mathrm{s}$	_	2	$0.673\mathrm{s}$		$(2,2)^{x}/(1,1)^{\checkmark}$	$1.062\mathrm{s}$
SININA	1	1	2	90	30	_	1	$0.450\mathrm{s}$	_	1	$0.461\mathrm{s}$		$(1,1)^{x}/(0,0)^{\checkmark}$	$0.456\mathrm{s}$
SININA	1	2	3	360	50	_	1	$0.555\mathrm{s}$	_	2	$1.395\mathrm{s}$	N	$(1,2)^{x}/(0,0)$	$17.985\mathrm{s}$
SININA	2	1	6	207	63	_	$2\checkmark$	$1.334\mathrm{s}$	_	1	$0.511\mathrm{s}$	CS	$(2,1)^{x}/(0,0)$	$73.574\mathrm{s}$
SININA*	2	2	9	825	105	_	$2\checkmark$	$76.030\mathrm{s}$	_	2^{\checkmark}	$5.300\mathrm{s}$	Η	$(2,2)^{x}/(0,0)^{\checkmark}$	> 2.7 h

^{*} Due to the high verification complexity, we interrupted the combined analysis after testing (2, 1)-SININA where VERICA already reported

a failure.

Case Studies from VERICA – SNINA Flaw

Case Studies from VERICA – ParTI

	$\mathrm{D}\epsilon$	esign	$\zeta(0, au_{ss})$	(r,mc_∞)	$\zeta(1, \tau_{sr}, \mathrm{mc}_{\infty})$		
Implementation	comb.	memory	Det./Corr.	Prob.	Det./Corr.	Prob.	
ParTI S-box (Detection)	678	78	_	$1^{\prime}[0.866\mathrm{s}]$	$1'[1.010\mathrm{s}]$	$0^{x}[1.950 s]$	
ParTI S-box (Correction)	2063	72	_	$1^{\prime}[4.103\mathrm{s}]$	$1^{\prime}[3.677\mathrm{s}]$	$0^{x}[336.239 s]$	

Case Studies from VERICA – SIFA

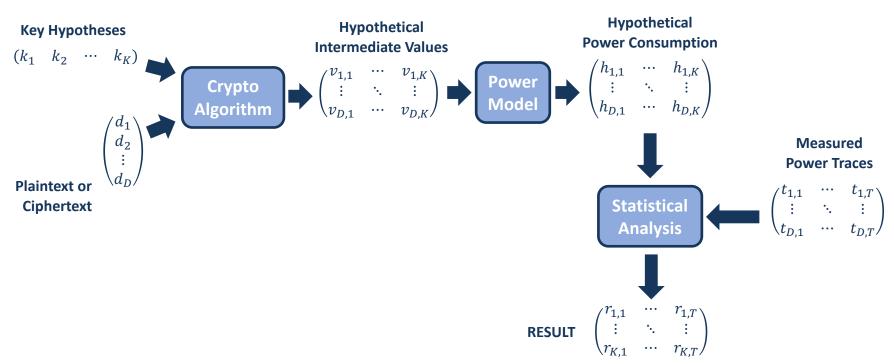
	Des	Design		$ au_{sr}, \mathrm{mc}_{\infty})$	$\zeta(1, au_{sr})$	(mc_{∞})	$\zeta(2, \tau_{sr}, \mathrm{mc}_{\infty})$	
Implementation	comb.	mem.	SIFA	Prob.	SIFA	Prob.	SIFA	Prob.
p_{TS}	8	6	_	1'[0.47 s]	1'[0.45 s]	$1'[0.45\mathrm{s}]$	$1^{x}[0.46 s]$	1'[0.44 s]
$p_{\chi S}$	10	6	_	$1'[0.45\mathrm{s}]$	$1'[0.44\mathrm{s}]$	$1^{\prime}[0.45\mathrm{s}]$	$1^{x}[0.46 s]$	$1'[0.45\mathrm{s}]$
χ_3	30	30	_	$1^{\prime}[0.43\mathrm{s}]$	$1'[0.46\mathrm{s}]$	$0^{x}[0.46 s]$	$1^{x}[0.46 s]$	$0^{x}[0.49 s]$
χ_5	52	42	_	$1'[0.44\mathrm{s}]$	$1^{\prime}[0.48\mathrm{s}]$	$0^{x}[0.44 s]$	$1^{x}[0.48s]$	$0^{x}[0.54 s]$
AES S-box, g_{104} [HPB21] AES S-box, full [HPB21]	631 634	0	_		$0^{x}[194.89 s]$ $1^{7}[194.58 s]$	$0^{x}[191.93 s]$ $0^{x}[194.70 s]$	$[\infty]$ $[\infty]$	$[\infty]$ $[\infty]$

Case Studies from CINI – Gadgets

THE STATE OF THE	Gadget				Design	n		Verification			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		d	k	rand.	comb.	reg.	area [GE]	Def.	(d, k)	Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	1	0	3	0	4.7		(0, 1)·	$0.387\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ect	_	2	0	6	0	9	Z	(0,2)	$0.397\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Det	_	3	0	13	0	15	E	(0,3)	$0.429\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	4	0	18	0	19.7		(0,4)	$1.280\mathrm{s}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	-	1	0	15	0	17		(0,1)	$0.383\mathrm{s}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	rec	_	2	0	75	0	98.3	Z	(0,2)	$0.445\mathrm{s}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sor	_	3	0	147	0	194.3	Œ	(0,3)	$16.501\mathrm{s}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ü	-	4	0	297	0	390		(0,4)	$6.24\mathrm{h}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	2	78	24	238		(1,1)	$0.409\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	1	6	189	54	567			$0.485\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	1	12	356	96	1032			$39.544\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ó-	1	2	2	340	40	685	CINI		$1.490\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PC	2	2	6	795	90	1595		(2,2)'	$6.321\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	3	2	12	1420	160	2860			$4.662\mathrm{min}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	3	2	590	56	1087		(1,3)	$16.817\mathrm{min}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	6	1362	126	2502		(2,3)	$3.897\mathrm{h}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	3	12	2456	224	4509		*	∞	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	1	66	36	294		(1,1)	$0.389\mathrm{s}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŲΫ	2	1	3	189	90	768	INI	(2,1)'	$0.775\mathrm{s}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ь	1	2	1	210	60	640		(1,2)	$0.804\mathrm{s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	2	2	3	615	150	1730	_	(2,2)'	$5.643\mathrm{s}$	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		3	1	6	372	168	1460		$(3,1)^{x}/(2,1)^{\checkmark}$	$18.386\mathrm{h}$	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		1	1	2	78	24	240		(1,1)	$0.397\mathrm{s}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1	6	189	54	573		(2,1)'	$4.329\mathrm{s}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	1	12	356	96	1044		*	∞	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HPC_1^l	1	2	4	360	40	728	ICINI	(1,2)	$7.153\mathrm{s}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	2	12	855	90	1725		*	∞	
1 3 6 646 56 1203 $(1,3)$ 4.743		3	2	24	1540	160	3120			∞	
		1		6	646	56	1203		(1,3)	$4.743\mathrm{h}$	
$2 3 18 1530 126 2852 \qquad \qquad * \qquad \infty$				18	1530	126	2852			∞	
3 3 36 2792 224 5209 * ∞		3	3	36	2792	224	5209		*	∞	

^{*} Due to the extensive amount of combinations, these gadgets could not be verified with VERICA.

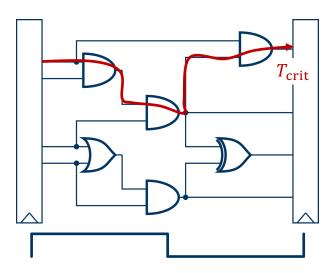
Welsh's *t*-test



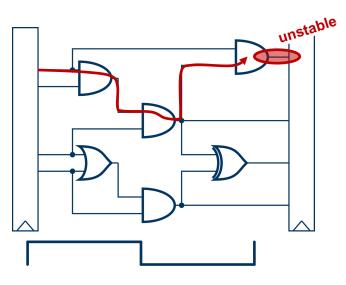
$$t = \frac{\mu_0 - \mu_1}{\sqrt{\frac{\sigma_0^2}{n_0} + \frac{\sigma_1^2}{n_1}}}$$

Welsh's t-test is used to validate the null hypothesis.

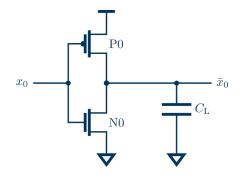
Differential Power Analysis (DPA)



[MOP08] Power analysis attacks: Revealing the secrets of smart cards.

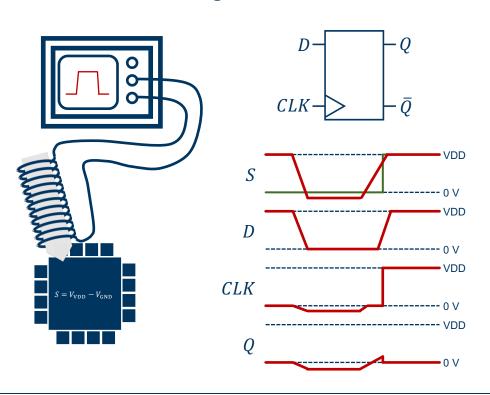

Clock Glitches

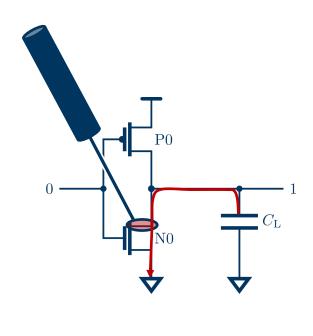
 $T_{\rm clk} \ge T_{\rm crit} + t_{\rm clkq} + t_{\rm setup} - \delta$



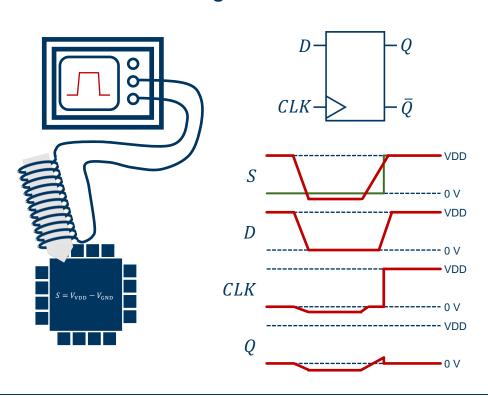
Clock Glitches

 $T'_{\rm clk} < T_{\rm crit} + t_{\rm clkq} + t_{\rm setup} - \delta$

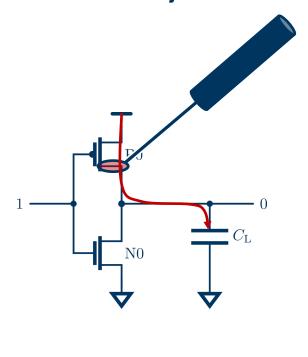

Underpowering and Voltage Glitches


$$t_{pLH} = \frac{C_L \cdot \left[\frac{2|V_{TH2}|}{|V_{DD}| - |V_{TH2}|} + \ln\left(3 - \frac{4|V_{TH2}|}{|V_{DD}|}\right) \right]}{\mu_p C_{OX} \left(\frac{W}{L}\right)_2 (V_{DD} - |V_{TH2}|)}$$

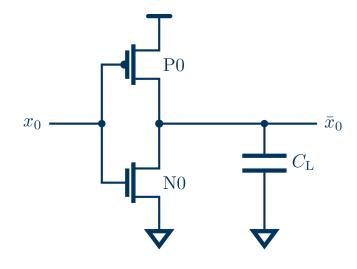
Electromagnetic Pulses



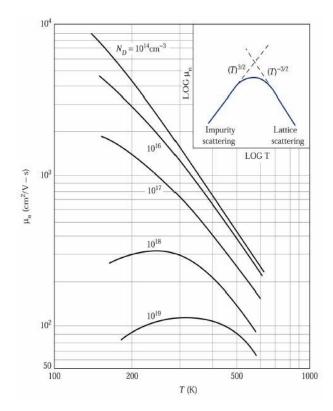
Laser Fault Injection



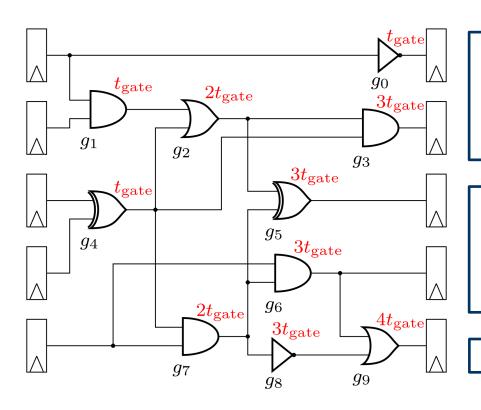
Electromagnetic Pulses



Laser Fault Injection



Fault-Injection Mechanisms – Temperature

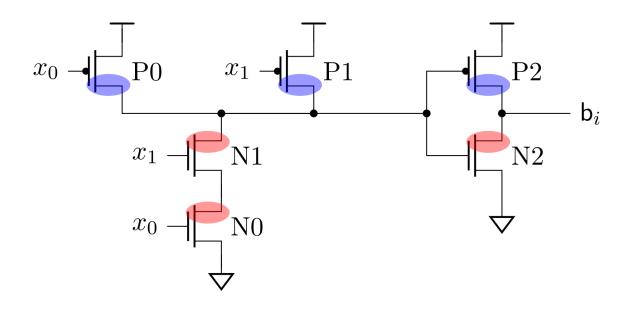

$$t_{PLH} = \frac{C_L \cdot \left[\frac{2|V_{TH2}|}{V_{DD} - |V_{TH2}|} + \ln\left(3 - \frac{4|V_{TH2}|}{V_{DD}}\right) \right]}{\mu_p O_{OX} \left(\frac{W}{L}\right)_2 (V_{DD} - |V_{TH2}|)}$$

[R08] Fundamentals of microelectronics.

Details about the Location Parameter

$$\mathcal{P} = \{t_o, t_1, ..., t_{T-1}\}$$
 where $t_0 > t_1 > \cdots > t_{T-1}$ and $T \leq |\mathcal{G}_{\text{regin}}|$
$$\mathcal{G}_{\text{cluster}, i} = \{g \in \mathcal{G}_{\text{regin}} \ \middle| \ t(g) \geq t_i, t_i \in \mathcal{P}\}$$

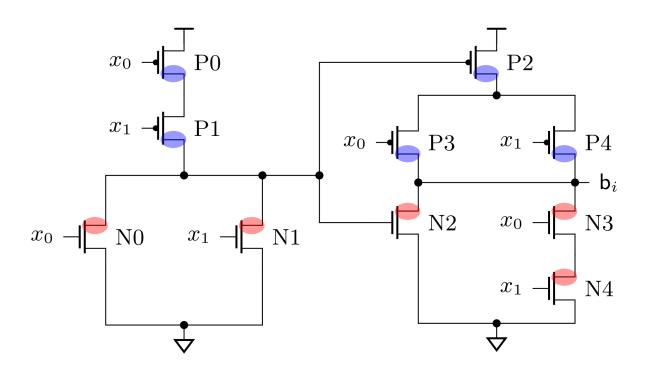
$$\mathcal{G}_{\text{cluster,0}} = \{g_9\}$$


$$\mathcal{G}_{\text{cluster,1}} = \{g_3, g_5, g_6\} \cup \{g_9\}$$

$$\mathcal{G}_{\text{cluster,2}} = \{g_0\} \cup \{g_3, g_5, g_6\} \cup \{g_9\}$$

$$c_{\infty} = \{g_0, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9\}$$

Fault Injections in CMOS Gates – AND



 $\{and\} \mapsto \{or, set, reset\}$

Fault Injections in CMOS Gates – XOR

 $\{and\} \mapsto \{nand, or, set, reset\}$

